

Tetrahedron Letters 43 (2002) 6979-6982

TETRAHEDRON LETTERS

The room temperature preparation of the 1-chloro-2,2-difluorovinylzinc reagent from HCFC-133a (CF₃CH₂Cl). The first ambient, high yield, one-flask preparation of α -chloro- β , β -difluorostyrenes

R. Anilkumar and Donald J. Burton*

Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA Received 12 June 2002; accepted 31 July 2002

Abstract—The reaction of LDA (2.0 equiv.) with a THF solution of $ZnCl_2$ (1.0 equiv.) and HCFC-133a (CF₃CH₂Cl) (1.0 equiv.) at 15–20°C gives a 91% yield of [F₂C=CClZnCl]. Addition of ArI and Pd(PPh₃)₄ at rt to 65°C gives 65–85% isolated yields of ArCCl=CF₂. This one-flask procedure provides the first room temperature generation of the 1-chloro-2,2-difluorovinylzinc reagent and the first high yield preparation of α -chloro- β , β -difluorostyrenes from a cheap, readily available industrial precursor. © 2002 Elsevier Science Ltd. All rights reserved.

Tarrant and co-workers reported the first preparation of 1-chloro-2,2-difluorovinyllithium 1 via metallation of 1-chloro-2,2-difluoroethylene 2 with *n*-BuLi at low temperatures.¹ Two decades later, Normant et al. utilized halogen-metal exchange with 1,1-dichloro-2,2-difluoroethylene 3 and *n*-BuLi to prepare $1.^2$ Subsequently, Normant reported an improved yield of 1 from 3 via addition of a molar equivalent of tetrahydrofuran (THF) as a co-solvent.³ Similar results were obtained by Okuhara.⁴ Scheme 1 summarizes these initial preparations.

Recently, based on the work of Coe with CF_3CFH_2 ,^{5–8} Percy and co-workers developed an excellent, high yield preparation of **1** from 1-chloro-2,2,2-trifluoroethane (HCFC-133a) **4** at low temperatures (Scheme 2).⁹ This dehydrofluorination–metallation approach was successfully utilized by Percy for the synthesis of fluorinated allylic alcohols⁹ and fluorinated succinic acid derivatives.¹⁰

The most recent preparation of 1 was reported by Kumadaki and co-workers.^{11,12} These workers reacted 2 with *sec*-BuLi in the presence of zinc chloride at -60° C

in ether. The intermediate lithium reagent 1 is presumably trapped in situ by the zinc chloride to form the 1-chloro-2,2-difluorovinylzinc reagent 5 (Scheme 3). The in situ formed 5 was subsequently reacted with 3,8-diiododeuteroporphyrin derivatives with Pd(0) catalysis to give a 99% yield of 3,8-bis(1-chloro-2,2difluorovinyl)deuteroporphyrin derivatives. The yield of

Scheme 1.

$$CF_3CH_2CI + 2 \text{ n-BuLi} \xrightarrow{\text{THF/hexane}} 1$$

Scheme 2.

2
$$\xrightarrow{\text{sec-BuLi}}_{\text{ether/cyclohexane}}$$
 [1] $\xrightarrow{\text{ZnCl}_2}_{-60 \text{ °C}}$ [CF₂=CClZnCl]
-60 °C 5

Scheme 3.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01591-5

Keywords: HCFC-133a; chlorodifluorovinylzinc; Pd(0) coupling; chlorodifluorovinyllithium; α -chloro- β , β -difluorostyrene.

^{*} Corresponding author. Fax: 319-335-1270; e-mail: donaldburton@uiowa.edu

5 is not reported in this work; however, calculation of the yield from data reported in the experimental section of this paper¹¹ indicates that the yield of **5** is $\sim 28-29\%$. Consequently, the in situ preparation of **5** is achieved at -60° C; however, the efficiency of the in situ preparation is modest, at best. In the Pd(0) coupling reaction, 13 equivalents of **5** (per vinyl iodide) is utilized to achieve the cross-coupled product, and the yield of the coupled product was reportedly based on the vinyl iodide.

Recently, we reported the in situ preparation of $[F_2C=CFZnCI]$ at room temperature via the reaction of CF_3CFH_2 with LDA and zinc chloride (Scheme 4).¹³ Subsequent Pd(0) cross-coupling of this zinc reagent with an aryl iodide is a cost-effective route to α,β,β -trifluorostyrenes.¹³

The success of this previous work prompted us to determine: (a) if this in situ preparative route could be utilized to prepare **5** in good yield (at room temperature), in contrast to the poor yield attained by the previous procedure;^{11,12} (b) if the *cisoid* and *transoid* structures of **5** proposed by these workers¹² had any validity, and (c) if the in situ generation of **5** (by our methodology) could be utilized in Pd(0) cross-coupling reactions without the necessity of a large excess of **5**.¹¹

We now wish to report that when a THF solution of **4** and anhydrous zinc chloride is treated with LDA at $15-20^{\circ}$ C, a 91% yield of **5** is formed (as detected by ¹⁹F NMR analysis of the reaction mixture) (Scheme 5).[†] Zinc iodide reacted similarly in this reaction. When the reaction mixture was quenched with iodine, F₂C=CCII,¹⁴ **6** was isolated, consistent with the formation of **5**. When **6** was reacted with activated zinc

$$CF_{3}CFH_{2} + 2 LDA \xrightarrow{ZnCl_{2}} [CF_{2}=CFZnCl] \cdot {}^{i}Pr_{2}NH$$

$$73\%$$

Scheme 4.

Scheme 5.

4 +
$$\frac{2 \text{ LDA/ ZnCl}_2}{\text{THF/15-20 °C}}$$
 [5] $\xrightarrow{\text{Arl}}$ ArCCl=CF₂
RT-65 °C 7

Scheme 6.

powder in THF, a 86.5% yield of $[F_2C=CClZnI]$ was produced.¹⁵

In order to test the viability of 5 in Pd(0)-catalyzed cross-coupling processes, addition of an aryl iodide and $Pd(PPh_3)_4$ to the solution of **5** and warming (rt to 65°C) provided the α -chloro- β , β -difluorostyrenes 7 in excellent isolated yields (Scheme 6).[‡] In this Stille type cross-coupling reactions a ratio of 1:0.85 (5/aryl iodide) was employed to ensure that all the aryl iodide was consumed (to facilitate the isolation of 7); no large excess of 5 was necessary. Table 1 summarizes the preparation of several derivatives of 7 prepared by this methodology. As noted in Table 1, the reaction is tolerant of a wide variety of functional groups and gives good yields of 7 even with a hindered ortho substituent (entry 4). It should also be noted that the reaction is readily scaled up, and a stock solution of 5 can be prepared and subsequently employed in functionalization reactions.

When 4 is reacted in situ with LDA and zinc chloride (as described above), a clear, pale yellow solution of 5 is produced in 91% ¹⁹F NMR yield. The ¹⁹F NMR spectrum of the zinc reagent 5 in THF/ⁱPr₂NH shows two major doublets at -78.9 and -92.9 ppm, respectively, with $J_{\rm FF}$ =59.0 Hz, assigned to the mono zinc reagent complexed to THF and/or diisopropylamine.¹⁶ This data is similar to the data reported by Kumadaki for 5 generated from 2 and *sec*-BuLi/Et₂O/cyclohexane (Normant's procedure).¹¹

[†]General procedure for the preparation of stock solution of 5: a two-neck 500 mL round bottom flask fitted with a nitrogen tee and a septum was charged with diisopropylamine (42.0 mL, 300.0 mmol) and dry THF (120.0 mL). The solution was cooled to 0°C and 2.5 M n-BuLi (120.0 mL, 300.0 mmol) was slowly added to the amine/THF solution over 40 min; then the solution was stirred for an additional 10 min. A 1 L three-neck round bottom flask fitted with a dry ice/isopropanol condenser, septum, and a low temperature thermometer was assembled while hot and flushed with N2 as it cooled. The flask was charged with ZnCl₂ (20.4 g, 150.0 mmol) and THF (110.0 mL). This saturated solution was cooled to 15°C with a cold water bath, then CF₃CH₂Cl (14.0 mL, 165.0 mmol) was condensed into the THF/ZnCl₂ solution. Then, the pre-generated LDA was slowly added to the THF/ZnCl₂/CF₃CH₂Cl solution (1.5 h) through a cannula, maintaining the temperature between 15 and 20°C (the tip of the cannula was dipped into the THF to avoid decomposition of the vinyllithium 1 at the tip of the cannula). After the addition of the LDA solution was completed, the reaction mixture was stirred at 20°C for 2 h, then allowed to settle. The ¹⁹F NMR spectrum of the zinc reagent was recorded (using C₆H₅CF₃ as an internal standard), and the ¹⁹F NMR yield of 5 was determined to be 91%.

[‡] Typical procedure for the cross-coupling reaction of 5 with aryl iodides: 25.0 mmol of the zinc reagent 5 was added (via syringe) to a three-neck 250 mL flask equipped with a condenser, stopper and septum under a nitrogen atmosphere. 4-Iodotoluene (21.3 mmol) and tetrakistriphenylphosphine palladium ($\sim 1.5 \text{ mol}\%$) were added to the above zinc reagent 5 and the reaction mixture was stirred at rt for 12 h. The reaction progress was monitored by $^{19}\mathrm{F}$ NMR by sampling small aliquots of the reaction mixture. After the reaction was completed, the reaction mixture was triturated several times with pentane or hexane (6×20 mL) and the combined extracts concentrated by rotary evaporation. The crude liquid obtained was distilled under reduced pressure (bp 51°C @ 9 mm) or purified by column chromatography (silica gel) to obtain p-methyl-a-chloroβ,β-styrene as a clear liquid in 83% (3.33 g, 17.7 mmol) yield. Spectral characteristics: ¹⁹F NMR (CDCl₃): δ -84.6 (d, J=35.2 Hz, 1F), -89.9 (d, J=35.4 Hz, 1F); ¹H NMR (CDCl₃): δ 7.39 (dd, J=1.2, 8.2 Hz, 2H), 7.18 (d, J=8.1 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (CDCl₃): δ 153.9 (dd, J=287.3, 292.0 Hz), 138.9 (s), 129.3 (s), 127.8 (d, J=5.5 Hz), 127.6 (dd, J=2.9, 5.4 Hz), 93.4 (dd, J=22.9, 37.5 Hz), 21.9 (s). GC-MS: 190 (M⁺+2, 32), 188 (M⁺, 100), 153 (48), 133 (85). HRMS: calcd for $C_9H_7^{-35}ClF_2$ 188.0204, obsd. 188.0204; calcd for C₉H₇³⁷ClF₂ 190.0175, obsd. 190.0180.

Thus, the chemical shift and coupling constants show minor variation due to complexation of 5 with different solvents, but are consistent with the formation of 5. However, when 2 is reacted with sec-BuLi/Et₂O/cyclohexane in the presence of zinc chloride,¹¹ Kumadaki reports the formation of a 'new' zinc reagent with the following ¹⁹F NMR data: -86.96 ppm (1F, d, J=42Hz), -87.16 ppm (1F, d, J=42 Hz), and -91.47 ppm (2F, d, J=42 Hz).^{11,12} He ascribes this data to a mixture of cisoid and transoid-bis (1-chloro-2,2difluorovinyl)-zinc.¹² We question the assignment of this data to the cisoid and transoid-bis-zinc reagent. As noted by Kumadaki, "the chemical shifts of his zinc reagent are very similar to those of 2, but coupling patterns of both spectra are different and a different distance between mid peaks at lower field is observed".^{11,12} We have generated **5** from **4** as described above. When the solution of 5 is partially hydrolyzed with glacial acetic acid, the following ¹⁹F NMR spectrum was observed (cf. Fig. 1). Note that both the zinc reagent 5 and 2 can be readily distinguished. Fig. 2 shows only 2 after complete hydrolysis with glacial acetic acid. 2 was subsequently removed from this reaction mixture under reduced pressure. The ¹⁹F NMR

spectrum and HRMS spectrum¹⁷ of the volatile material confirmed it to be **2**. Thus, we propose that the spectrum observed for the zinc reagent by Kumadaki is the spectrum of **2**. Slight modification of the peak heights and coupling constants can occur due to complexation with different solvents or phasing of the instrument. It is **not** necessary to invoke isomeric zinc reagents to account for the spectral data.

In conclusion, we have described a general, high yield preparation of the 1-chloro-2,2-difluorovinylzinc reagent via the in situ reaction of CF₂CH₂Cl(HCFC-133a) with LDA/ZnCl₂ at room temperature. The HCFC-133a is a readily available industrial material and the reaction can be easily scaled up to provide a stable stock solution of the zinc reagent for functionalization reactions. The zinc reagent readily couples with aryl iodides with Pd(0) catalysis to provide the first, general high yield synthesis of α -chloro- β , β difluorostyrenes.¹⁸⁻²⁰ Thus, the styrenes can be readily prepared from the cheap industrial precursor, CF₃CH₂Cl, via a one-flask procedure. Work is in progress with other CF_3CH_2X (X = Br, I, CF₃) derivatives, with additional functionalization reactions, as well as

Table 1. Preparation of α -chloro- β , β -difluorostyrenes (7) from HCFC-133a

	CF ₃ CH ₂	$Cl + ZnCl_2 + 2LDA$		$\begin{array}{c} 1) \text{ 15-20 °C, THF} \\ \hline 2) \text{ ArI, Pd}(\text{PPh}_{3})_{4,} \Delta \end{array} \qquad \qquad$		
Entry	Ar	Temp/Time	Styrene	NMR Yield (%)	Yield ^{a,b}	
1	$C_{6}H_{5}^{-}$	65°C/1 h	7a	94	77	
2	p-MeC ₆ H ₄ ⁻	rt/12 h	7b	99	83	
3	$m - NO_2C_6H_4^-$	rt/15 h	7c	90	77	
4	$o - PrC_6H_4^-$	65°C/12 h	7d	95	75	
5	$p-\text{EtO}_2\text{CC}_6\text{H}_4^-$	65°C/3 h	7e	91	70	
6	m-BrC ₆ H ₄ -°	rt/18 h	7f	96	85	
7	m-MeOC ₆ H ₄ ⁻	60°C/3 h	7g	94	79	
8	2-Thienyl	rt/4 h; 60°C/3 h	7h	87	65	

^a Isolated yields of pure products were obtained either by column chromatography or distillation under reduced pressure.

^b All products give satisfactory ¹⁹F, ¹H, ¹³C NMR and HRMS data consistent with the assigned structure.

^c 1% of the bis styrene was formed.

Figure 1. Partial hydrolysis of [CF₂=CClZnCl] with acetic acid.

Figure 2. Complete hydrolysis of [CF₂=CClZnCl] with acetic acid.

other metal halides trapping agents, to elucidate the generality of this new, in situ approach.

Acknowledgements

We thank the National Science Foundation for support of this research.

References

- Drakesmith, F. G.; Richardson, R. D.; Stewart, O. J.; Tarrant, P. J. Org. Chem. 1968, 33, 286–291.
- Masure, D.; Sauvetre, R.; Normant, J. F.; Villieras, J. Synthesis 1976, 761–764.
- Masure, D.; Chuit, C.; Sauvetre, R.; Normant, J. F. Synthesis 1978, 458–460.
- 4. Okuhara, K. J. Org. Chem. 1976, 41, 1487-1494.
- Burdon, J.; Coe, P. L.; Haslock, I. B.; Powell, R. L. Chem. Commun. 1996, 49–50.
- Burdon, J.; Coe, P. L.; Haslock, I. B.; Powell, R. L. J. Fluorine Chem. 1999, 99, 127–131.
- 7. Coe, P. L. J. Fluorine Chem. 1999, 100, 45-52.
- Burdon, J.; Coe, P. L.; Haslock, I. B.; Powell, R. L. J. Fluorine Chem. 1997, 85, 151–153.
- Bainbridge, J. M.; Brown, S. J.; Ewing, P. N.; Gibson, R. R.; Percy, J. M. J. Chem. Soc., Perkin Trans. 1 1998, 2541–2545.

- Brown, S. J.; Corr, S.; Percy, J. M. *Tetrahedron Lett.* 2000, 41, 5269–5273.
- Shigeoka, T.; Kuwahara, Y.; Watanabe, K.; Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. *J. Fluorine Chem.* 2000, *103*, 99–103.
- Ando, A.; Kumadaki, I. J. Fluorine Chem. 1999, 100, 135–146.
- 13. Anilkumar, R.; Burton, D. J. *Tetrahedron Lett.* **2002**, *43*, 2731–2733.
- 14. $F_2C=CCII: {}^{19}F$ NMR: (THF/ Pr_2 NH): -77.3 ppm (d, $J_{FF}=28.1$ Hz) and -81.4 ppm (d, $J_{FF}=29.2$ Hz). HRMS: calcd for $C_2F_2{}^{35}CII$ 223.8701, obsd. 223.8701; calcd for $C_2F_2{}^{37}CII$ 225.8672, obsd. 225.8665.
- ¹⁹F NMR data for [F₂C=CClZnI] (THF): -76.4 ppm (d, *J*_{FF}=51.3 Hz) and -91.1 ppm (d, *J*_{FF}=51.5 Hz); ¹⁹F NMR data for [F₂C=CClZnI] (THF/TMEDA); ¹⁹F NMR: -76.6 (d, *J*=54.5 Hz) and -90.9 (d, *J*=55.0 Hz).
- 16. The bis-zinc reagent (minor product) can show minor variations in chemical shifts, dependent on the solvent. With TMEDA, the ¹⁹F NMR spectrum of the bis-reagent **5** exhibits a doublet at -76.4 ppm (J=58.3 Hz) and a doublet at -92.2 ppm (J=59.0 Hz).
- 17. HRMS: **2** calcd for $C_2HF_2^{35}Cl$: 97.9735, obsd. 97.9733; calcd for $C_2HF_2^{37}Cl$: 99.9705, obsd. 99.9709.
- Cohen, S. G.; Wolosinski, H. T.; Scheuer, P. J. J. Am. Chem. Soc. 1949, 71, 3439–3440.
- Wheaton, G. A.; Burton, D. J. J. Org. Chem. 1978, 43, 2643–2651.
- Burton, D. J.; Anderson, A. L.; Takei, R.; Koch, H. F.; Shih, T. L. J. Fluorine Chem. 1980, 16, 229–235.